
ManyQuadrupeds: Learning a Single Locomotion Policy for Diverse Quadruped Robots

Milad Shafiee1, Guillaume Bellegarda1, and Auke Ijspeert1

Abstract— Learning a locomotion policy for quadruped
robots has traditionally been constrained to a specific robot
morphology, mass, and size. The learning process must usually
be repeated for every new robot, where hyperparameters
and reward function weights must be re-tuned to maximize
performance for each new system. Alternatively, attempting
to train a single policy to accommodate different robot sizes,
while maintaining the same degrees of freedom (DoF) and
morphology, requires either complex learning frameworks, or
mass, inertia, and dimension randomization, which leads to
prolonged training periods. In our study, we show that drawing
inspiration from animal motor control allows us to effectively
train a single locomotion policy capable of controlling a diverse
range of quadruped robots. The robot differences encompass:
a variable number of DoFs, (i.e. 12 or 16 joints), three distinct
morphologies, a broad mass range spanning from 2 kg to
200 kg, and nominal standing heights ranging from 16 cm to
100 cm. Our policy modulates a representation of the Central
Pattern Generator (CPG) in the spinal cord, effectively coordi-
nating both frequencies and amplitudes of the CPG to produce
rhythmic output (Rhythm Generation), which is then mapped to
a Pattern Formation (PF) layer. Across different robots, the only
varying component is the PF layer, which adjusts the scaling
parameters for the stride height and length. Subsequently, we
evaluate the sim-to-real transfer by testing the single policy on
both the Unitree Go1 and A1 robots. Remarkably, we observe
robust performance, even when adding a 15 kg load, equivalent
to 125% of the A1 robot’s nominal mass.

I. INTRODUCTION AND RELATED WORK

The oldest group of vertebrates which have appendages
(i.e. fins or legs) are the elasmobranchs (sharks and rays).
These vertebrates have followed a separate evolutionary path
from mammals for over 420 million years. However, neural
circuits controlling elasmobranch fins and mammalian limbs
have exhibited remarkable similarities at the molecular,
cellular, and behavioral levels [1]. This suggests that the
neural substrate responsible for limb control was already
conserved over 420 million years ago, and that the motor
control scheme of tetrapods is preserved across various
vertebrate species, each with their own unique size, inertia,
and morphology [2]. In contrast, in robotics, it is common
practice to design and train a new control policy for each new
specific robot. In this paper, we demonstrate how employing
a biology-inspired motor-control scheme can streamline
the training process, enabling the development of a single
control policy applicable to quadruped robots with diverse
sizes, inertias, morphologies, and degrees of freedom (DoF).

1 This research is supported by the Swiss National Science Foundation
(SNSF) as part of project No.197237. The authors are with the BioRobotics
Laboratory, Ecole Polytechnique Federale de Lausanne (EPFL). (e-mail:
firstname.lastname@epfl.ch)

Fig. 1: Simulation and experiment snapshots of training and
deploying a single policy to control 16 different robots. Videos:
https://miladshafiee.github.io/ManyQuadrupeds/

A. Central Pattern Generators

Quadruped animal motor control can be described as an
intricate interplay between the Central Pattern Generator
(CPG), sensory feedback, and supraspinal drive signals
from the brain. In robotics, abstract models of CPGs are
commonly used for locomotion pattern generation [3]–[6], as
well as to investigate biological hypotheses [7], [8]. Besides
the intrinsic oscillatory behavior of CPGs, several other
properties such as robustness and implementation simplicity
make CPGs desirable for locomotion control [9]. For
legged robots, the CPG is usually designed for feedforward
rhythm generation, and dynamic balancing is achieved with
optimization [3], or hand-tuned feedback [4], [10].

B. Learning Locomotion

Deep Reinforcement Learning (DRL) has emerged as a
powerful approach for training robust legged locomotion
control policies in simulation, and deploying these sim-to-
real on hardware [11]–[24]. Most of these works view the
trained artificial neural network (ANN) as a “brain” which
has full authority to directly control the joint movements.
These methods involve training custom policies from the
ground up for each new quadruped’s unique morphology.
Recent research aims to eliminate the need for policy

ar
X

iv
:2

31
0.

10
48

6v
1

 [
cs

.R
O

]
 1

6
O

ct
 2

02
3

https://miladshafiee.github.io/ManyQuadrupeds/

retraining by investigating the potential of graph learning
[25]–[28]. In these approaches, the agent’s morphology is
typically considered as a graph, with the graph’s structure
mirroring the agent’s physical body. Most of these methods
utilize agent-agnostic reinforcement learning combined
with transfer learning techniques. While these methods
based on graph learning exhibit promise in simulating toy
examples, they have yet to be validated in real-world robotic
systems [25]–[27]. Additionally, the gaits generated in
these simulations often lack a natural sense of locomotion,
which could make the transition from simulation to the real
world challenging. Furthermore, such approaches demand
significant computational resources and can require days of
training on a standard GPU [27].

Feng et al. [29] introduced a unified policy training
approach for learning locomotion through animal motion
imitation for a diverse set of quadrupeds, encompassing
a range of sizes and masses, yet sharing identical DoFs.
This method demonstrated successful simulation-to-reality
transfer capabilities; however, it requires a two-week
training period on a 16-core CPU, and is limited to robots
with the same number of DoFs per leg.

C. Contribution

In this paper, we employ a biology-inspired learning
framework to learn a single locomotion policy able to control
a diverse range of quadrupeds, encompassing significant
variations in size, mass, morphology, and DoF. Our proposed
framework seamlessly integrates Central Pattern Generators
and Deep Reinforcement Learning [30]–[32], where we
use a simple Multi-Layer Perceptron (MLP) to represent
higher control centers. This control center orchestrates
the precise modulation of the CPG within the spinal cord
and adeptly maps the rhythm generation network onto a
pattern formation layer. We list below the advantages of the
proposed architecture:

Generality and Versatility: The pattern formation layer,
which shapes the feet trajectories in task-space, allows us
to train a single locomotion policy for different robots with
only a few parameter adjustments specific to each robot.
Therefore, the action space does not rely on the number of
joints or morphology, and we do not need to include joint
information in the observation either. This leads to a constant
size for both the action and observation spaces for all four-
limb robots, which facilitates training robots with varying
morphologies and DoFs with a simple MLP architecture.
Mapping feet trajectories to joint positions is accomplished
through inverse kinematics (IK). Solving the IK problem
for legged robots, which fall under the category of serial
manipulators, is a well-established research area. Numerous
numerical and analytical methods are readily available for
efficiently solving the IK problem for various types of serial
limbs, each with different DoFs. By entrusting the task of
handling morphology to IK, in contrast to the current state-
of-the-art in learning quadrupedal locomotion for various
robots [29], our method accommodates diverse morphologies
and varying DoF. Furthermore, we tested the generalization

of the framework by excluding three robots with extreme
mass and size properties across three different morphologies
from the training process. During these tests, we observed
a stable gait for the previously unseen robots, even though
the policy had not been specifically trained for them.

Computational Efficiency: Additionally, our approach
doesn’t necessitate extensive dynamics randomization or
motion imitation [29], and it relies on a simple MLP
architecture for the Artificial Neural Network. This
architectural simplicity, in addition to training robot policies
in parallel on a single GPU in Isaac Gym [33], results in
high computational efficiency, enabling us to train a single
policy for 16 diverse robots in less than two hours, giving
orders of magnitude speed-up over previous works.

Robustness: Furthermore, we achieve stable trotting in
sim-to-real quadruped experiments, even with an additional
load of 15.0 kg, equivalent to 125% of the A1 robot’s nomi-
nal mass. To the best of our knowledge, this accomplishment
represents the pinnacle of robustness against additional loads
ever achieved on the A1 robot. In comparison, learning
based methods managed a load of up to 12 kg [18], and a
model-based approach achieved an 11 kg load capacity [34].

II. CENTRAL PATTERN GENERATORS

The vertebrate locomotor system is structured such
that spinal CPGs are responsible for generating primary
rhythmic patterns, while higher-level centers, such as
the motor cortex, cerebellum, and basal ganglia, adjust
these patterns in response to environmental conditions [1].
Rybak et al. [35] propose that biological CPGs exhibit a
dual-level functional organization, with a half-center rhythm
generator (RG) determining locomotion frequency, and
pattern formation (PF) circuits shaping the precise form
of muscle activation signals [35]. This two-tier functional
model has also found application in robotics, particularly
for quadruped locomotion research [30], [36].

A. Rhythm Generator (RG) Layer

We utilize non-linear phase oscillators to model the RG
layer of the CPG circuits in the spinal cord. These oscillators
have been effectively applied in the control of quadrupedal
locomotion [3], [7], [30] with the following dynamics:

r̈i=α

(
α

4
(µi−ri)−ṙi

)
(1)

θ̇i=ωi (2)

where θi is the phase of the oscillator, ri is the amplitude
of the oscillator, ωi and µi are the intrinsic frequency and
amplitude, α is a positive convergence factor. Notably, we
do not consider explicit phase coupling between different
oscillators. Consequently, the phase relationships between
the legs must be learned and managed by the control policy
by effectively modulating the intrinsic frequency for each
limb. The control policy also learns to manipulate stride
length by modifying the intrinsic amplitude.

Rythm Generator

Pattern Formation

CPG States
FL

FRHR

HL

Agent

Actions

Scalling foot trajectoy

Joints Commands

Oscillators
Frequency,
 Amplitude

Robot states
Reward

Obs space
Reward

O O O

O

Fig. 2: Quadrupedal locomotion in animals is governed by interactions
between the spinal CPG, sensory feedback, and supraspinal brain signals.
In our approach, we employ DRL to train a neural network policy
that mimics supraspinal drive behavior, enabling it to modulate CPG
dynamics. To simulate the CPG within the spinal cord, we utilize nonlinear
amplitude-controlled phase oscillators to represent the Rhythm Generator
(RG) layer. The RG’s outputs are then transformed into foot positions and,
using inverse kinematics, converted into motor commands via a Pattern
Formation (PF) layer.

B. Pattern Formation (PF) Layer

To establish a mapping from the output of the RG layer
to joint commands, we first determine desired foot positions,
and then we employ inverse kinematics to compute the
corresponding desired joint positions. We formulate the
desired foot position coordinates as follows:

xi,foot= xoff,i−Lstep(ri)cos(θi) (3)

zi,foot=

{
zoff,i−h+Lclrncsin(θi) if sin(θi)>0

zoff,i−h+Lpntrsin(θi) otherwise
(4)

where Lstep denotes the nominal step length, h represents
the scaling factor for body height, Lclrnc indicates the
maximum ground clearance during the swing, Lpntr

signifies the maximum ground penetration during stance
phase, and xoff serve as set-point altering the equilibrium
point of oscillation in the x direction. Lstep, Lclrnc, Lpntr,
h, and xoff are parameters that vary between different robots
and are selected based on the relative size of each robot, and
these values remain constant throughout the training process.

III. LEARNING FRAMEWORK

In this section, we present our hierarchical bio-inspired
learning framework for training a single policy to control
various quadruped robots. We represent the supraspinal
controller as an ANN, which we train with DRL so the
agent can learn to modulate the intrinsic frequencies and
amplitudes of each limb oscillation to produce stable gaits.
We formulate the problem as a Markov Decision Process
(MDP), which consists of observations, actions, and rewards.
The proposed action-space modulates feet trajectories, and
we do not include joint information in the observation space.
This leads to a constant size for action and observation
space for all four-limb robots, which facilitates training
robots with various morphologies and DoF with a simple
MLP architecture. We detail the MDP components below.

A. Action Space
We incorporate one RG layer for each limb, as defined by

Equations (1) and (2). The RG output is then utilized in a
PF layer to generate spatio-temporal foot trajectories in task
space, as described in Equations (3) and (4). Notably, we do
not include explicit neural coupling, with the intuition that
inter-limb coordination will be controlled by the supraspinal
drive. As in [30], [32], our action space modulates the intrin-
sic amplitudes and frequencies of the CPG, by continuously
updating µi and ωi for each leg. Therefore, our action space
is represented as a = [µ,ω] ∈ R8. The agent selects these
parameters at a rate of 100 Hz, varying them at each step
based on sensory inputs. During training, we impose the
following limits on each input: µ ∈ [0.5,4] and ω ∈ [0,5]
Hz. We emphasize that our action space modulates the feet
trajectories in task-space, and these trajectories are subse-
quently mapped to joint space through inverse kinematics.
Therefore, the proposed learning architecture is independent
of the robot’s morphology and DoF, as long as we solve the
inverse kinematics separately for each robot.

B. Observation Space
Our observation space includes body orientation, body

linear and angular velocity, foot contact booleans, relative
feet positions with respect to the body frame, the preceding
action selected by the policy network, and the CPG states
{r, ṙ,θ, θ̇}. It is worth noting that, unlike most other RL
approaches, we omit proprioceptive information like joint
positions and velocities. Instead, we employ a forward
kinematics approach based on the current joint positions to
determine relative foot positions with respect to the body
frame, and then we incorporate these foot positions into the
observation space. This design choice simplifies the training
process and ensures it remains independent of specific
morphologies and DoFs.

C. Reward Function
We use the following reward function to promote

viability with forward progress, minimize changes in body
orientation, and encourage energy efficiency:

r1=α1 ·min(fx,dmax)+α2 ·||obase−ozero||
+α3 ·|τ ·(q̇t−q̇t−1)|

Mass (Kg)

1

1

100 cm 63 cm 50 cm 57 cm

2 43

4

2

3

6

7
8 9

12

10

11

14

13

16

86 kg

56 kg

52 kg

52 kg

30 kg

30 kg
25 kg

20 kg

13 kg

12 kg

8 kg

4 kg

2 kg
2 kg

12 kg

200

5

15

30 cm 18.3 cm 19 cm 25 cm

6 7 8 Laikago

9 10 11 12

13 14 15 16

16 DoF

12 DoF

12 DoF

12 DoF

12 DoF

12 DoF

12 DoF

12 DoF

12 DoF

12 DoF

12 DoF

12 DoF

12 DoF
12 DoF

16 DoF

16 DoF

57 cm 48 cm 40 cm

42 cm 30 cm 30 cm 30 cm

A Robot numbers and nominal stance height B Robot mass and Morphology

52 cm

5

SoloLittle -DogSpot-MicroMini-Cheetah

Go1A1Dog1Aliengo

Anymal-BAnymal-C Spot

Dog1 HYQ Dog2

Fig. 3: Characteristics and parameters of 16 diverse quadruped Robots. These robots exhibit variations in mass, ranging from 2 to 200 kg, nominal height
from 18 to 100 cm, and come in three different morphologies, with two types of DoF, either 12 or 16.

TABLE I: PPO Hyperparameters and neural network architecture used
with Isaac Gym.

Parameter Value Parameter Value
Batch size 98304 GAE discount factor 0.95

Mini-bach size 24576 KL-divergence kl∗ 0.01
Number of epochs 5 Learning rate α adaptive

Clip range 0.2 NN Layers [512, 256, 128]
Entropy coefficient 0.01 Activation elu

Discount factor 0.99 Framework Torch

• Viability in forward progress: In the first term, fx rep-
resents the robot’s forward progress in the world (along
the x-direction). To prevent the exploitation of simulator
dynamics and the attainment of unrealistic speeds, we
constrain this term. The constraint is set to ensure
that the robot is rewarded for moving forward with a
certain maximum distance during each control cycle,
where dmax denotes this maximum distance (α1=8.0).

• Base orientation penalty: The second term penalizes
non-zero body orientation (α2=−0.25).

• Power: The third term penalizes power to encourage
energy-efficient gaits, with τ and q̇ representing joint
torques and velocities, respectively (α3=−0.00001).

IV. RESULTS

In this section, we present results from learning a single
unified policy to control multiple diverse quadrupeds in
both simulation and hardware experiments. Section IV-A
details the implementation settings for both simulations and
experiments. We then delve into the outcomes of training the
policy in Section IV-B. Section IV-C focuses on sim-to-real

hardware results. For clear visualizations of the experiments,
we encourage the reader to watch the supplementary video.

A. Implementation Setting
We use Isaac Gym [33], [37] for training and simulating 16

different quadruped robots. These robots exhibit variations in
mass, ranging from 2 to 200 kg, nominal height from 18 to
100 cm, and come in three different morphologies, with two
types of DoF, either 12 or 16. The robots in our study include
the commercial robots Unitree A1, Go1, Aliengo, Laikago,
B1, Boston Dynamics Spot, ANYbotics ANYmal-B and
ANYmal-C, MIT mini-cheetah, Little-Dog, Spot-Micro,
Solo, and HYQ, as well as three customized three-segmented
leg quadruped robots. Characteristics and parameters for
each robot are detailed in Table II and Figure 3. We consider
the following three main morphologies in simulation:
Elbow-Up configuration for all limbs (3-DoF): This
configuration, used in robots like Spot, MIT mini-Cheetah,
A1, Go1, B1, Laikago, Aliengo, and Spot-micro, consists of
a 2-segmented elbow-up for both front and hind legs. Each
leg has three Degrees of Freedom (DoF): one for adduction-
abduction and two for hip and knee flexion/extension. We
solve the inverse kinematics analytically with constraints to
an elbow-up configuration.
Elbow-Up for front and Elbow-Down for hind limbs
(3-DoF): Similar to the first category, the front limbs
maintain an elbow-up configuration, but the hind limbs
adopt an elbow-down configuration for the knee. We utilized
the same analytical inverse kinematics solution as the first

TABLE II: Characteristics and parameters of diverse quadruped robots, these parameters are fixed during training. The bold values represent the highest
and lowest mass and dimensions, as well as a morphology that is unconventional for legged robots, resembling the morphology of animals more closely.

Robot Height h [cm] Lstep [cm] Lclrnc [cm] Lpntr [cm] xoffset [cm] DoF - Morphology Mass [kg] Kp Kd

Little Dog 19.0 5.0 4.7 0.5 1.1 12 - 2 2.9 20.0 0.3
Spot-Micro 18.3 5.0 3.7 0.5 1.0 12 - 1 4.8 20.0 0.3

Solo 25.0 10.0 5.0 0.5 3.7 12 - 2 2.5 20.0 0.3
Mini-Cheetah 30.0 13.0 7.0 1.0 0.0 12 - 1 8.4 100.0 2.7

A1 30.0 13.0 7.0 1.0 0.0 12 - 1 12.0 100.0 2.7
Go1 30.0 13.0 7.0 1.0 0.0 12 - 1 12.0 100.0 2.7

Aliengo 42.0 16.0 7.0 1.0 0.0 12 - 1 20.6 100.0 2.7
Laikago 40.0 16.0 7.0 1.0 0.0 12 - 1 25.0 100.0 2.7

Anymal-B 48.0 17.0 7.0 0.0 10.0 12 - 2 30.0 430.0 20.7
Anymal-C 52.0 18.0 7.0 1.0 12.0 12 - 2 52.1 430.0 20.7

Spot 57.0 20.0 9.0 1.0 0.0 12 - 1 30.0 430.0 20.7
B1 57.0 18.0 9.0 1.0 0.0 12 - 1 52.7 430.0 20.7

HYQ 63.0 20.0 9.0 1.0 8.7 12 - 2 86.7 430.0 20.7
Dog1 30.0 13.0 7.0 1.0 0.0 16 - 3 13.8 100.0 2.7
Dog2 57.0 18.0 7.0 1.0 0.0 16 - 3 56.0 200.0 10.7
Dog3 100.0 36.0 9.0 2.0 0.0 16 - 3 200.0 1400.0 140.7

0.0

0.2

0.4

0.6

0.8

1.0

1.2
1.4

1.6

B
a
se

 V
e
lo

ci
ty

 (
m

/s
)

Little-Dog

Spot-Micro

Solo

Mini-Cheetah

A1

Go1

Aliengo

Laikago

Anymal-B

Anymal-C

Spot

B1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
1.4

1.6

B
a
se

 V
e
lo

ci
ty

 (
m

/s
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

5

0

5

10

15

20

25

30

Fr
e
q
u
e
n
cy

 (
ra

d
/s

)
A

m
p
lit

u
d
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

5

0

5

10

15

20

25

30

A1

Go1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

time (s)

A1

Go1
3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

5

0

5

10

15

20

25

30

5

0

5

10

15

20

25

30

HYQ

Dog 1

Dog 2

Dog 3

1.5

2.0

2.5

3.0

3.5

4.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5

0

5

10

15

20

25

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

5

0

5

10

15

20

25

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

5

0

5

10

15

20

25

30

5

0

5

10

15

20

25

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.5

2.0

2.5

3.0

3.5

4.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2
1.4

1.6

B
a
se

 V
e
lo

ci
ty

 (
m

/s
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
1.4

1.6

B
a
se

 V
e
lo

ci
ty

 (
m

/s
)

Little-Dog

Spot-Micro
6Spot

B1
7HYQ

Dog 1

Aliengo

Laikago
Anymal-B

Anymal-C

Solo

Mini-Cheetah

8Dog 2

Dog 3
1 2

A Robots Velocities

B CPG frequencies for Front Right Limb

C CPG Amplitudes for Front Right Limb

3 4 5

Little-Dog

Spot-Micro
6Spot

B1

7HYQ

Dog 1

Aliengo

Laikago
Anymal-B

Anymal-C
Solo

Mini-Cheetah

8Dog 2

Dog 3
1 2 4 5

1 2 3 4

Fig. 4: Simulation results for training a single policy for 16 different quadrupeds: Top: Base locomotion velocity. Middle: CPG Frequencies for Front Right
limb. Bottom: CPG Amplitudes for Front Right limb. We use the FR limb since the robots exhibit a trot gait where the feet closely repeat the same pattern.

category but applied an elbow-down setting for the hind
limbs. This configuration is used in robots like ANYmal-B,
ANYmal-C, Solo, HYQ, and Little-Dog.
Quadrupedal Animal-like Configuration (4-DoF): In this
morphology, inspired by quadruped animals, each leg has
four DoF: one for adduction-abduction and three for hip,
knee, and foot flexion/extension. We also use an analytical
inverse kinematics solution for this configuration, which is
applied to three animal-like robots with varying sizes and
mass properties. For a visual reference, please see Figure 3.

To train the policies, we use Proximal Policy Optimization
(PPO) [38], and Table I lists the PPO hyperparameters
and neural network architecture. The control frequency of
the policy is 100 Hz, and the torques computed from the
desired joint positions are updated at 1 kHz. The equations
for each of the oscillators (Equations 1 and 2) are thus also
integrated at 1 kHz. All policies are trained for 14.0×107

samples on a NVIDIA GeForce RTX 3070 8GB.

B. Simulation Results

In this section, we present simulation results from training
the 16 quadruped robots to learn forward locomotion. We

consider four parameters for each robot which are fixed
during training: nominal standing height, nominal step
length, ground clearance of feet during the swing phase,
and feet penetration into the ground during stance phase, as
shown in Table II. These values are heuristically scaled for
each robot based on its height in the zero joints position
(i.e. when the legs are fully extended). Figure 4 illustrates
the base velocity and CPG frequency and amplitude of
the Front Right limb for this first trained policy across
all quadruped robots. In this scenario, the reward function
encourages forward movement as much as possible while
penalizing velocities exceeding 1.5 m/s. Small-sized robots,
such as Little-Dog and Spot-Micro, can only reach speeds of
0.8 and 1.2 m/s, respectively (Figure 4-A-1). The frequency
trajectory corresponding to small robots (Figure 4-B-1
and 2) shows that, in comparison to the larger robots
(Figure 4-B-3, 4, 5, 6), the policy tends to use the highest
possible frequency to increase the velocity of small-sized
robots. However, increasing velocity for the larger robots
does not necessarily require very high frequencies, as they
have greater flexibility to increase their base velocity by

Fig. 5: Left: Snapshots of Go1 trotting on uneven grass. Right: Snapshots of A1 carrying 10 to 15 kg. The robot starts trotting with a 10 kg mass, and
then an additional 5 kg is added. The robot successfully walks despite never having encountered any such disturbances during training.

extending their stride length compared to smaller robots.
Our results show that robots with the second type of con-

figuration such as Little-Dog and ANYmal-B and ANYmal-
C reach smaller velocities (0.8, 1.4 and 1.4 m/s) respec-
tively) with respect to similar sized robots with the first type
morphology such as Spot-Micro, B1 and Spot (1.2, 1.55 and
1.55 m/s respectively). Furthermore, Figure 4-C-5 and 6
shows that Anymal-B and C locomote with a smaller average
amplitude, while Spot and Unitree B1 tend to have the high-
est amplitude possible, resulting in a higher stride length. De-
spite the similar mass properties of the compared robots, this
observation needs a proper investigation for different nominal
parameters to shed some light on the effect of morphology
and mass properties in agility and efficiency, for future work.

An interesting observation is that Dog3, the largest
simulated robot with a weight of 200 kg and a nominal
height of 100 cm, utilizes the highest amplitude. In contrast
to other robots, the amplitude reaches its maximum at the
starting point of the movement and does not change, allowing
for the use of the longest possible stride length, while
maintaining a low locomotion frequency. This observation
intuitively suggests that robots with larger and heavier limbs
tend to adopt a gait characterized by a low frequency and
the longest possible stride length, which helps minimize
the CoT (penalized in our reward function). At the other
extreme, Spot-Micro, which is the smallest robot, exhibits a
similar strategy for amplitude. It utilizes very high amplitude
with small changes but takes many steps with a high control
frequency. This behavior is driven by Spot-Micro’s priority
to increase speed due to its limitations caused by its small
limbs. In contrast, increasing speed for Dog3 is less critical,
so it selects a gait that minimizes energy consumption.

Furthermore, we trained a single policy for 13 quadruped
robots, excluding HYQ, Dog3, and B1, during training. We
deliberately selected these robots to represent the extreme
mass and size properties of each morphology to test the
generalization capabilities of the framework. We observed
reasonable locomotion behavior for these robots, even though
the policy had not been specifically trained on them. Please
refer to the supplementary video for visual reference.
C. Experimental Results

For the experiments, we trained the single policy to
locomote with a maximum velocity of 1 m/s, without
incorporating any domain randomization or noise during the
training process. We transferred the trained policy sim-to-real

to the Go1 and A1 robots, which are the only quadruped
robots available in the lab. Figures 1 and 5 show both
simulation and experiments snapshots. We tested the control
policy on the Go1 robot in two outdoor environments: one
on a concrete pavement, and the other on uneven grass. In
both scenarios, we observed a very smooth trotting gait.
Notably, the grass surface is quite uneven, with holes and
bumps that were not encountered during the training process.

We tested the same policy on the A1 robot in two
types of experiments: normal walking, and load-carrying
scenarios. It’s noteworthy that the addition of loads was
not encountered during training. We achieved stable trotting
in all experiments, even with an additional load of 15.0
kg, equivalent to 125% of the robot’s nominal mass. To
the best of our knowledge, this accomplishment represents
the highest level of robustness against additional loads
ever achieved with the A1 robot. In comparison, learning-
based methods managed a load of up to 12 kg [18], and a
model-based approach achieved an 11 kg load capacity [34].

V. CONCLUSION
Biological studies have shown that vertebrates utilize very

similar motor control architectures, despite differences in
morphology, size, mass, and DoFs [2]. Drawing inspiration
from this fact, we have presented a biology-inspired learning
framework based on Central Pattern Generators and Deep
Reinforcement Learning (CPG-RL) with the capability to
train a single policy for controlling diverse quadruped robots.
These robots vary in the number of DoFs, with variations of
12 and 16, encompass three distinct morphologies, have a
wide mass range of 2 Kg to 200 Kg, and nominal standing
heights ranging from 16 cm to 100 cm. The proposed
framework acts in task-space to modulate and control the
feet trajectories, and it does not rely on observing joint
information in the observation space, which facilitates
training robots with different DoFs and morphologies.
Moreover, we are able to train a single policy that works for
16 different robots in less than two hours. In our sim-to-real
hardware experiments, we successfully demonstrated stable
trotting even with an additional load of 15.0 kg on the
Unitree A1 robot, which is equivalent to 125% of the
robot’s nominal mass. To the best of our knowledge, this
accomplishment demonstrates the highest level of robustness
against additional loads ever achieved on the A1 robot.

For future work, we plan to expand our framework to
include omni-directional motion planning on uneven terrain.

We also aim to further explore how morphology and DoFs
influence the agility and efficiency of quadruped locomotion
in both animals and robots.

ACKNOWLEDGEMENTS

We would like to thank Alessandro Crespi for assisting
with hardware setup.

REFERENCES

[1] S. Grillner and A. El Manira, “Current principles of motor control,
with special reference to vertebrate locomotion,” Physiological
reviews, vol. 100, no. 1, pp. 271–320, 2020.

[2] S. Grillner, “Evolution: vertebrate limb control over 420 million
years,” Current Biology, vol. 28, no. 4, pp. R162–R164, 2018.

[3] A. Spröwitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri,
and A. J. Ijspeert, “Towards dynamic trot gait locomotion: Design,
control, and experiments with cheetah-cub, a compliant quadruped
robot,” The International Journal of Robotics Research, vol. 32,
no. 8, pp. 932–950, 2013.

[4] M. Ajallooeian, S. Pouya, A. Sproewitz, and A. J. Ijspeert, “Central
pattern generators augmented with virtual model control for quadruped
rough terrain locomotion,” in 2013 IEEE International Conference
on Robotics and Automation, 2013, pp. 3321–3328.

[5] S. Aoi, P. Manoonpong, Y. Ambe, F. Matsuno, and F. Wörgötter,
“Adaptive control strategies for interlimb coordination in legged
robots: a review,” Frontiers in neurorobotics, vol. 11, p. 39, 2017.

[6] H. Kimura, Y. Fukuoka, and A. H. Cohen, “Adaptive dynamic
walking of a quadruped robot on natural ground based on biological
concepts,” The International Journal of Robotics Research, vol. 26,
no. 5, pp. 475–490, 2007.

[7] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen, “From
swimming to walking with a salamander robot driven by a spinal
cord model,” Science, vol. 315, no. 5817, pp. 1416–1420, 2007.

[8] R. Thandiackal, K. Melo, L. Paez, J. Herault, T. Kano, K. Akiyama,
F. Boyer, D. Ryczko, A. Ishiguro, and A. J. Ijspeert, “Emergence
of robust self-organized undulatory swimming based on local
hydrodynamic force sensing,” Science Robotics, vol. 6, no. 57, 2021.

[9] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots: A review,” Neural Networks, vol. 21, no. 4, pp.
642–653, 2008, robotics and Neuroscience.

[10] L. Righetti and A. J. Ijspeert, “Pattern generators with sensory
feedback for the control of quadruped locomotion,” in 2008 IEEE
International Conference on Robotics and Automation. IEEE, 2008,
pp. 819–824.

[11] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based
character skills,” ACM Transactions on Graphics (TOG), vol. 37,
no. 4, pp. 1–14, 2018.

[12] A. Iscen, K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani,
and V. Vanhoucke, “Policies modulating trajectory generators,” in
Conference on Robot Learning. PMLR, 2018, pp. 916–926.

[13] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, 2019.

[14] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, 2020.

[15] T. Miki, J. Lee, J. Hwanbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, 2022.

[16] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind
bipedal stair traversal via sim-to-real reinforcement learning,” arXiv
preprint arXiv:2105.08328, 2021.

[17] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” 2020.

[18] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” arXiv preprint arXiv:2107.04034, 2021.

[19] G. Ji, J. Mun, H. Kim, and J. Hwangbo, “Concurrent training of a
control policy and a state estimator for dynamic and robust legged
locomotion,” IEEE Robotics and Automation Letters, vol. 7, no. 2,
pp. 4630–4637, 2022.

[20] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal,
“Rapid locomotion via reinforcement learning,” arXiv preprint
arXiv:2205.02824, 2022.

[21] G. Bellegarda, Y. Chen, Z. Liu, and Q. Nguyen, “Robust high-speed
running for quadruped robots via deep reinforcement learning,” in
2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022, pp. 10 364–10 370.

[22] Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots, “Fast and
efficient locomotion via learned gait transitions,” in Conference on
Robot Learning. PMLR, 2022, pp. 773–783.

[23] Y. Shao, Y. Jin, X. Liu, W. He, H. Wang, and W. Yang, “Learning free
gait transition for quadruped robots via phase-guided controller,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 1230–1237, 2022.

[24] W. Yu, C. Yang, C. McGreavy, E. Triantafyllidis, G. Bellegarda,
M. Shafiee, A. J. Ijspeert, and Z. Li, “Identifying important sensory
feedback for learning locomotion skills,” Nature Machine Intelligence,
vol. 5, no. 8, pp. 919–932, 2023.

[25] W. Huang, I. Mordatch, and D. Pathak, “One policy to control them all:
Shared modular policies for agent-agnostic control,” in International
Conference on Machine Learning. PMLR, 2020, pp. 4455–4464.

[26] V. Kurin, M. Igl, T. Rocktäschel, W. Boehmer, and S. Whiteson, “My
body is a cage: the role of morphology in graph-based incompatible
control,” arXiv preprint arXiv:2010.01856, 2020.

[27] B. Trabucco, M. Phielipp, and G. Berseth, “Anymorph: Learning
transferable polices by inferring agent morphology,” in International
Conference on Machine Learning. PMLR, 2022, pp. 21 677–21 691.

[28] J. Whitman, M. Travers, and H. Choset, “Learning modular robot
control policies,” IEEE Transactions on Robotics, 2023.

[29] G. Feng, H. Zhang, Z. Li, X. B. Peng, B. Basireddy, L. Yue,
Z. Song, L. Yang, Y. Liu, K. Sreenath, et al., “Genloco: Generalized
locomotion controllers for quadrupedal robots,” in Conference on
Robot Learning. PMLR, 2023, pp. 1893–1903.

[30] G. Bellegarda and A. Ijspeert, “CPG-RL: Learning central pattern
generators for quadruped locomotion,” IEEE Robotics and Automation
Letters, vol. 7, no. 4, pp. 12 547–12 554, 2022.

[31] M. Shafiee, G. Bellegarda, and A. Ijspeert, “Puppeteer and marionette:
Learning anticipatory quadrupedal locomotion based on interactions
of a central pattern generator and supraspinal drive,” 2023 IEEE
International Conference on Robotics and Automation, 2023.

[32] M. Shafiee, G. Bellegarda, and A. Ijspeert, “Deeptransition: Viability
leads to the emergence of gait transitions in learning anticipatory
quadrupedal locomotion skills,” arXiv preprint arXiv:2306.07419,
2023.

[33] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey,
M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al.,
“Isaac gym: High performance gpu-based physics simulation for
robot learning,” arXiv preprint arXiv:2108.10470, 2021.

[34] M. Sombolestan, Y. Chen, and Q. Nguyen, “Adaptive force-based con-
trol for legged robots,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 7440–7447.

[35] I. A. Rybak, N. A. Shevtsova, M. Lafreniere-Roula, and D. A.
McCrea, “Modelling spinal circuitry involved in locomotor pattern
generation: insights from deletions during fictive locomotion,” The
Journal of physiology, vol. 577, no. 2, pp. 617–639, 2006.

[36] A. Fukuhara, D. Owaki, T. Kano, R. Kobayashi, and A. Ishiguro,
“Spontaneous gait transition to high-speed galloping by reconciliation
between body support and propulsion,” Advanced robotics, vol. 32,
no. 15, pp. 794–808, 2018.

[37] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,”
in Proceedings of the 5th Conference on Robot Learning, ser.
Proceedings of Machine Learning Research, A. Faust, D. Hsu, and
G. Neumann, Eds., vol. 164. PMLR, 08–11 Nov 2022, pp. 91–100.
[Online]. Available: https://proceedings.mlr.press/v164/rudin22a.html

[38] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017.

https://proceedings.mlr.press/v164/rudin22a.html

	Introduction and Related Work
	Central Pattern Generators
	Learning Locomotion
	Contribution

	Central Pattern Generators
	Rhythm Generator (RG) Layer
	Pattern Formation (PF) Layer

	Learning Framework
	Action Space
	Observation Space
	Reward Function

	Results
	Implementation Setting
	Simulation Results
	Experimental Results

	Conclusion
	References

